Serotonin 2A receptor regulates microtubule assembly and induces dynamics of dendritic growth cones in rat cortical neurons in vitro.
نویسندگان
چکیده
Serotonin (5-HT) regulates the development of cerebral cortex, but 5-HT receptors mediating the effects are poorly understood. We investigated roles of 5-HT2A receptor in dendritic growth cones using dissociation culture of rat cerebral cortex. Neurons at embryonic day 16 were cultured for 4 days and treated with 5-HT2A/2C receptor agonist (DOI) for 4h. DOI increased the size of growth cone periphery which was actin-rich and microtubule-associated protein 2-negative at the dendritic tip. The length increase of the growth cone periphery may be mediated by 5-HT2A receptor, because the 5-HT2A receptor antagonist reversed the effects of DOI. Moreover, the time-lapse analysis demonstrated the increase of morphological dynamics in dendritic growth cones by DOI. Next, to elucidate the mechanisms underlying the actions of 5-HT2A receptor in dendritic growth cones, we examined the cytoskeletal proteins, tyrosinated α-tubulin (Tyr-T; dynamic tubulin) and acetylated α-tubulin (Ace-T; stable tubulin). DOI increased the fluorescence intensity of Tyr-T, while decreased that of Ace-T in the dendritic growth cone periphery. These effects were reversed by the 5-HT2A receptor antagonist, suggesting that 5-HT2A receptor promotes microtubule dynamics. In summary, it was suggested that 5-HT2A receptor induces morphological changes and dynamics of dendritic growth cones through regulation of microtubule assembly.
منابع مشابه
Rapid modulation of spine morphology by the 5-HT2A serotonin receptor through kalirin-7 signaling.
The 5-HT(2A) serotonin receptor is the most abundant serotonin receptor subtype in the cortex and is predominantly expressed in pyramidal neurons. The 5-HT(2A) receptor is a target of several hallucinogens, antipsychotics, anxiolytics, and antidepressants, and it has been associated with several psychiatric disorders, conditions that are also associated with aberrations in dendritic spine morph...
متن کاملSubtype specific roles of serotonin receptors in the spine formation of cortical neurons in vitro.
Dendritic spines are postsynaptic structures which are formed from filopodia. We examined roles of serotonin (5-HT) receptors in the spine formation. Embryonic rat cortical neurons were cultured for 10 or 14 days and treated by 5-HT receptor agonists for 24 h. At 11 days in vitro, 5-HT(1A) agonist increased filopodia density, whereas 5-HT(2A/2C) agonist increased the density of puncta and spine...
متن کاملThe PDZ-binding domain is essential for the dendritic targeting of 5-HT2A serotonin receptors in cortical pyramidal neurons in vitro.
The 5-HT(2A) serotonin receptor represents an important molecular target for atypical antipsychotic drugs and for most hallucinogens. In the mammalian cerebral cortex, 5-HT(2A) receptors are enriched in pyramidal neurons, within which 5-HT(2A) receptors are preferentially sorted to the apical dendrites. In primary cortical cultures, 5-HT(2A) receptors are sorted to dendrites and not found in th...
متن کاملDirect binding of TUBB3 with DCC couples netrin-1 signaling to intracellular microtubule dynamics in axon outgrowth and guidance.
The coupling of axon guidance cues, such as netrin-1, to microtubule (MT) dynamics is essential for growth cone navigation in the developing nervous system. However, whether axon guidance signaling regulates MT dynamics directly or indirectly is unclear. Here, we report that TUBB3, the most dynamic β-tubulin isoform in neurons, directly interacts with the netrin receptor DCC, and that netrin-1 ...
متن کاملRac1 modulates stimulus-evoked Ca(2+) release in neuronal growth cones via parallel effects on microtubule/endoplasmic reticulum dynamics and reactive oxygen species production.
The small G protein Rac regulates cytoskeletal protein dynamics in neuronal growth cones and has been implicated in axon growth, guidance, and branching. Intracellular Ca(2+) is another well known regulator of growth cone function; however, effects of Rac activity on intracellular Ca(2+) metabolism have not been well characterized. Here, we investigate how Rac1 activity affects release of Ca(2+...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Neuroscience research
دوره 81-82 شماره
صفحات -
تاریخ انتشار 2014